
A Truly Usable Message Box
How to overcome problems with the built-in message boxes and
learn lots of useful techniques along the way...
by Steven J Colagiovanni

➤ Figure 2: MessageDlg➤ Figure 1:
Application.MessageBox

Just about All Windows pro-
grams use message boxes and

Borland has provided us with
essentially two function calls for
displaying them: Application.Mes-
sageBox and MessageDlg. Both are
single line calls specifying the mes-
sage you want to display, a glyph
and the buttons you want available
to the user. With these function
calls, Borland has provided us with
the ability to create message boxes
that promote code reusability and
customizability.

Application.MessageBox is actu-
ally a wrapper for the Windows
MessageBox API call which makes
life easier.

The MessageDlg function creates
an attractive message box with a
three dimensional look. This and
three related functions (Message-
DlgPos, ShowMessage and ShowMes-
sagePos) are contained in the
Dialogs unit and dynamically cre-
ate and destroy a TForm object at
runtime, placing the appropriate
glyph, buttons and message on the
form. MessageDlg provides several
features not available in Applica-
tion.MessageBox. You can specify
any combination of buttons and
allow your user to access a help
file. Using the MessageDlgPos func-
tion, you can also specify the
screen position of the message
box. It’s interesting that Borland
made MessageDlg a function, not an
object or a component. This makes
it more versatile and allows it to be
used within DLLs.

With all of its benefits, MessageDlg
has many shortcomings. It doesn’t
allow us to specify a caption for the
message box and the default cap-
tions (Warning, Error, Information,
Confirm and the name of your ex-
ecutable file) are, to be nice, poor.
The captions are determined by
the type of message box created.
Also, the system menu on the
dialog contains the Close item (the

dialog for Application.MessageBox
does not). Close on the system
menu passes mrCancel as the result.
If your MessageDlg displays Yes and
No buttons and you are only check-
ing for a result of mrYes and mrNo this
could cause problems.

Unfortunately, Application.Mes-
sageBox has some major shortcom-
ings also. When our application is
used under Windows 3.1x, the 3D
look that we worked so hard on
displays two dimensional message
boxes with a white background.
This hurts the continuity of our
application and looks poor.

Figures 1 and 2 show the mes-
sage boxes created by Applica-
tion.MessageBox and MessageDlg
respectively, as they appear in
Windows 3.1x. Windows 95 does
not produce this problem because
all windows, including message
boxes, are created with a 3D
appearance.

Having to pass the message to
Application.MessageBox as a PChar
produces extra work. Simple mes-
sages like ’Are you certain you
want to close the application?’
can be passed as a literal value
(Delphi knows how to automat-
ically translate strings that appear
in quotes into PChars). However, if
you want to pass a message like

’Are you certain you want to ’+
’delete file: ’+varFileName+’?’

then you would have to declare a

PChar variable, allocate memory for
it, copy the text into the PChar, and
destroy the memory allocated
after the PChar variable is passed to
Application.MessageBox. This is a
lot of hassle just to be able to insert
the name of the file about to be
deleted into a message box. Also,
Application.MessageBox has only
six possible combinations of
buttons.

There are some advantages to
Application.MessageBox. Because
the message is a PChar we can have
messages that are longer than 255
characters. However, large mes-
sage boxes like this are usually not
desirable. If you need a dialog that
displays only a Retry and a Cancel
button, Application.MessageBox
puts the Retry button first, but
MessageDlg puts the Cancel button
first. A program using MessageDlg
would not be consistent with other
Windows applications. Applica-
tion.MessageBox allows you to des-
ignate which button will have the
focus and be the default. Windows
File Manager uses a message box
that asks the user to verify that
they want to delete a file, display-
ing Yes and No buttons, and the No
button is the default. Using
MessageDlg, the Yes button would
be the default. This doesn’t protect
the user if they accidentally press
the Enter key.

What we need is a message box
function that has all the features of
both Application.MessageBox and
MessageDlg without any of their

28 The Delphi Magazine Issue 18

flaws. Unfortunately, the only way
to do this is to create an entirely
new set of functions. If you have the
Delphi source code, you could re-
write or modify the Dialogs unit
source code, but this is not recom-
mended. If your modifications cre-
ate an error that causes a bug, or
worse, a GPF, you’re in trouble. It is
better to create a new set of func-
tions and use slightly different
names to avoid possible conflicts.
You may still need to include the
Dialogs unit in your application, be-
cause it also contains the wrapper
functions for the Windows com-
mon dialogs (Open File, Save File,
Printer, etc).

The CreateMsgBox Function
Our new set of functions will call a
CreateMsgBox function, which will
contain the majority of the code
which will dynamically create a
TForm object and place the appro-
priate glyph, buttons and message
(contained in a TLabel component)
on the form. CreateMsgBox and its
calling functions will use several
enumerated types that need to be
declared in the interface section.
To make using these functions eas-
ier, we will also declare constants
for the button combinations that
are used most often. These custom
types and constants, some of
which are similar to those used by
MessageDlg, are defined in Listing 1.

If you have the VCL source code,
you can compare the TMsgBoxType
in Listing 1 with the TMsgDlgType
used for the MessageDlg function (in
DIALOGS.PAS). I have placed the
mbCancel button between mbAll and
mbHelp. This will allow our func-
tions to display the Cancel button
last when our dialog box displays
Retry and Cancel buttons. You may
have noticed that I added constant
declarations for mbYesNo and
mbRetryCancel, which do not exist
for Borland’s MessageDlg function.

In the implementation section are
several arrays used when placing
the glyph, message and buttons on
the form. These arrays are defined
in Listing 2. The CreateMsgBox func-
tion also uses several constants
when constructing the form and all
the components we put on it. The
complete listing for CreateMsgBox is

shown in Listing 3. Please refer to
this as you follow the discussion
below.

The first thing CreateMsgBox does
is dynamically create a TForm and
set some of the properties. Setting
Font.Height := -13 will allow pre-
cise sizing of the font, and will be
approximately equal to 10 point.
The Windows MessageBox API
function uses 10 point, MS Sans
Serif font so these settings should
allow our message box to look
similar.

Creating The Message
Message boxes created with Appli-
cation.MessageBox or MessageDlg
vary in size depending on how
much text is displayed in the
message. The Windows API call
DrawText is used to determine how
large an area is required to display
the text, then we size the message
box around this. The DT_WORDBREAK
value allows DrawText to automat-
ically wrap the text (if necessary),
while the DT_CALCRECT value will
expand the bottom of the rectangle
as needed to display all the text.
DT_NOPREFIX is included so that we
can use an ampersand (&) sign in
our message. It serves the same
purpose as TLabel’s ShowAccelChar

property. One of the parameters
passed in DrawText is a TRect, the
values of which are the boundaries
of a rectangle the text will be
placed in. A rectangle half the
width of the screen should be suf-
ficient, while keeping the message
box from filling up the entire
screen. We can set the height to 0,
because when DrawText is done the
size of TextRect will reflect the
actual height and width required to
display all the text.

The function then creates a TLa-
bel component that will be used to
display the message. If the text was
drawn on the form’s canvas using
DrawText, we would have to redraw
the text every time the form re-
quires repainting. Assigning the
message to the label’s Caption
property will handle the repainting
of the text for us. The label’s parent
is set to Result (the form) so the
label is placed on the form. The
label’s BoundsRect property is used
to set the width and height equal to
TextRect. The label’s ShowAccelChar
property is set to False so that we
can use an ampersand.

Creating The Glyph
The next step is to create and place
the glyph or icon. The Windows

type
 TMsgBoxType = (mtWarning, mtError, mtInformation,
 mtConfirmation, mtCustom);
 TMsgBoxBtn = (mbYes, mbNo, mbOK, mbAbort, mbRetry,
 mbIgnore, mbAll, mbCancel, mbHelp);
 TMsgBoxButtons = set of TMsgBoxBtn;
 TDefaultBtn = (dfFirst, dfSecond, dfThird); { Default Button }
const
 mbYesNo = [mbYes, mbNo];
 mbYesNoCancel = [mbYes, mbNo, mbCancel];
 mbOKCancel = [mbOK, mbCancel];
 mbRetryCancel = [mbRetry, mbCancel];
 mbAbortRetryIgnore = [mbAbort, mbRetry, mbIgnore];

➤ Listing 1

const
 { Identifiers for MessageBox Icons - stored in video driver }
 ResIDs: array[TMsgBoxType] of PChar =
 (IDI_EXCLAMATION, IDI_HAND, IDI_ASTERISK, IDI_QUESTION, nil);
 { Button.Caption - strings stored in Windows, load on call }
 BtnCaptions: array[TMsgBoxBtn] of Word =
 (SMsgdlgYes, SMsgdlgNo, SMsgdlgOK, SMsgDlgAbort, SMsgDlgRetry,
 SMsgDlgIgnore, SMsgDlgAll, SMsgdlgCancel, SMsgdlgHelp);
 { Button.Name }
 BtnNames: array[TMsgBoxBtn] of PChar = (’btnYes’, ’btnNo’, ’btnOK’,
 ’btnAbort’, ’btnRetry’, ’btnIgnore’, ’btnAll’, ’btnCancel’, btnHelp’);
 { Button.Result }
 BtnResult: array[TMsgBoxBtn] of TModalResult = (mrYes, mrNo, mrOK,
 mrAbort, mrRetry, mrIgnore, mrAll, mrCancel, mrNone);

➤ Listing 2

February 1997 The Delphi Magazine 29

video driver (eg VGA.DRV) con-
tains the icons displayed in the
Windows message boxes. The
glyphs are stored in the video
driver because the size of the
glyphs can vary depending on the

function CreateMsgBox(const AMsg: string; const ACaption:
 string; AType: TMsgBoxType; AButtons: TMsgBoxButtons;
 ADefaultButton: TDefaultBtn): TForm;
const
 MsgDlgMinWidth = 150;
 MsgDlgMinHeight = 55;
 MsgDlgBtnSize: TPoint = (X: 77; Y: 28);
 { mgTextMargin: Top, left, right margins around text & glyph }
 mgTextMargin = 10;
 mgGlyphSpacing = 15; { Spacing between glyph and text }
 mgBtnLRMargin = 15;
 mgBtnTopMargin = 20;
 mgBtnBottomMargin = 8;
 mgButtonSpacing = 8;
var
 MsgLabel: TLabel;
 Glyph: TImage;
 FIcon: TIcon;
 Buttons: array[TMsgBoxBtn] of TButton;
 Btn: TMsgBoxBtn;
 ButtonCount: Integer;
 ButtonSize: TPoint;
 InfoSize: TPoint;
 TextRect: TRect;
 C: array[0..255] of Char;
 ButtonX: Integer;
 ButtonTop: Integer;
 function Max(v1, v2: Integer): Integer;
 begin
 if v2 > v1 then Result := v2
 else Result := v1;
 end;
begin
 Result := TForm.CreateNew(Application);
 with Result do begin
 PixelsPerInch := 96;
 BorderStyle := bsDialog;
 BorderIcons := [biSystemMenu];
 Ctl3D := True;
 Font.Name := ’MS Sans Serif’;
 Font.Height := -13;
 Font.Style := [fsBold];
 TextRect := Rect(0, 0, Screen.Width div 2, 0);
 DrawText(Canvas.Handle, StrPCopy(C, AMsg), -1, TextRect,
 DT_CALCRECT or DT_WORDBREAK or DT_NOPREFIX);
 { create the text }
 MsgLabel := TLabel.Create(Result);
 MsgLabel.Name := ’Message’;
 MsgLabel.Parent := Result;
 MsgLabel.WordWrap := True;
 MsgLabel.ShowAccelChar := False;
 MsgLabel.Caption := AMsg;
 MsgLabel.BoundsRect := TextRect;
 if ResIDs[AType] <> nil then begin
 Glyph := TImage.Create(Result);
 Glyph.Name := ’Image’;
 Glyph.Parent := Result;
 FIcon := TIcon.Create;
 try
 FIcon.Handle := LoadIcon(0, ResIDs[AType]);
 Glyph.Picture.Graphic := FIcon;
 Glyph.BoundsRect := Bounds(mgTextMargin,
 mgTextMargin, FIcon.Width, FIcon.Height);
 finally
 FIcon.Free;
 end;
 end else
 Glyph := nil;
 { sum up the size of the informational items }
 InfoSize.X := (TextRect.Right - TextRect.Left) +
 (mgTextMargin * 2);
 if Glyph <> nil then
 Inc(InfoSize.X, Glyph.Picture.Graphic.Width +
 mgGlyphSpacing);
 if Glyph <> nil then
 InfoSize.Y := Max(Glyph.Picture.Graphic.Height,
 TextRect.Bottom - TextRect.Top) + mgTextMargin
 else
 InfoSize.Y := (TextRect.Bottom - TextRect.Top) +
 mgTextMargin;
 { create the buttons }
 ButtonCount := 0;
 for Btn := Low(TMsgBoxBtn) to High(TMsgBoxBtn) do begin
 if Btn in AButtons then begin
 Inc(ButtonCount);
 Buttons[Btn] := TButton.Create(Result);

 with Buttons[Btn] do begin
 Parent := Result;
 SetBounds(0, 0, MsgDlgBtnSize.X, MsgDlgBtnSize.Y);
 Caption := LoadStr(BtnCaptions[Btn]);
 Name := StrPas(BtnNames[Btn]);
 ModalResult := Btnresult[Btn];
 { Need to set Default and Cancel properties
 for button }
 If (Btn = mbNo) or (Btn = mbCancel) then
 Cancel := True;
 If (Btn = mbYes) or (Btn = mbOK) then
 Default := True;
 { Determine if button is to be the default }
 If ButtonCount = Ord(ADefaultButton) + 1 then
 ActiveControl := TButton(Buttons[Btn]);
 end;
 end else
 Buttons[Btn] := nil;
 end;
 { If both a No and a Cancel button exist, then turn off
 the Cancel style of the NO button }
 if (mbNo in AButtons) and (mbCancel in AButtons) then
 Buttons[mbNo].Cancel := False;
 { If both a Yes and an OK button exist, then turn off
 the Default style of the Yes button }
 if (mbYes in AButtons) and (mbOK in AButtons) then
 Buttons[mbYes].Default := False;
 { if only an OK button exists, mark it as Cancel also }
 if (mbOK in AButtons) and (ButtonCount = 1) then
 Buttons[mbOK].Cancel := True;
 ButtonSize.X := (ButtonCount * MsgDlgBtnSize.X) +
 (mgButtonSpacing * (ButtonCount - 1)) +
 (mgBtnLRMargin * 2);
 ButtonSize.Y := MsgDlgBtnSize.Y + mgBtnTopMargin +
 mgBtnBottomMargin;
 { set the caption }
 if ACaption <> EmptyStr then
 Caption := ACaption
 else
 Caption := Application.Title;
 { Set minimum width and height for TForm necessary to
 display complete caption, icon, message and buttons }
 ClientWidth := Max(Max(Canvas.TextWidth(Caption) + 50,
 MsgDlgMinWidth), Max(InfoSize.X, ButtonSize.X));
 ClientHeight := Max(MsgDlgMinHeight, InfoSize.Y +
 ButtonSize.Y);
 { layout the text and glyph }
 if (Glyph <> nil) and (Glyph.Height >
 (TextRect.Bottom - TextRect.Top)) then begin
 Glyph.Top := mgTextMargin;
 MsgLabel.Top := Glyph.Top +
 (Glyph.Picture.Graphic.Height div 2) -
 ((TextRect.Bottom - TextRect.Top) div 2);
 ButtonTop := Glyph.Top + Glyph.Height;
 end else begin
 MsgLabel.Top := mgTextMargin;
 if Glyph <> nil then
 Glyph.Top := MsgLabel.Top + (((TextRect.Bottom -
 TextRect.Top) div 2) - (Glyph.Height div 2));
 ButtonTop := MsgLabel.Top + MsgLabel.Height;
 end;
 if Glyph <> nil then
 MsgLabel.Left :=
 Glyph.Left + Glyph.Width + mgGlyphSpacing
 else
 MsgLabel.Left := mgTextMargin;
 { layout the buttons }
 ButtonX := (Result.ClientWidth div 2) -
 (ButtonSize.X div 2) + mgBtnLRMargin;
 for Btn := Low(TMsgBoxBtn) to High(TMsgBoxBtn) do
 if Buttons[Btn] <> nil then begin
 Buttons[Btn].Left := ButtonX;
 Buttons[Btn].Top := mgBtnTopMargin + ButtonTop;
 Inc(ButtonX, Buttons[Btn].Width + mgButtonSpacing);
 end;
 { Removes CLOSE option from system menu.
 GetSystemMenu(Result.Handle, False) Obtains Handle
 to System Menu }
 RemoveMenu(GetSystemMenu(Result.Handle, False), 1,
 MF_BYPOSITION);
 end;
 { Center form on the screen }
 Result.Left :=
 (Screen.Width div 2) - (Result.Width div 2);
 Result.Top :=
 (Screen.Height div 2) - (Result.Height div 2);
end;

resolution and design of the driver.
This is why the glyphs change
when your program is run under
Windows 95. By loading one of
these icons into memory and
placing it on the form, we will
always display a properly sized
and colored glyph. The constant

definitions for these icons are
stored in the ResIDs array. If
TMsgBoxType is mtCustom then ResIDs
equals nil and no glyph will be dis-
played. We will use a TImage compo-
nent to place the glyph and, like the
label, TImage will handle repainting.
To place the glyph in the TImage

➤ Listing 3

30 The Delphi Magazine Issue 18

component, we first have to create
a TIcon and load the glyph into it
using LoadIcon. We can then set the
TImage.Picture.Graphic property
to TIcon. Lastly, we will need to free
the TIcon.

At this point we can calculate
how much space is required to dis-
play the message and the glyph
(the information area). Since we
need to calculate both the height
and width of this area, we need two
integer variables. A TPoint variable
stores two integers, usually a set of
X and Y coordinates. We can also
use it here to store the height and
width of a component, or the image
area. The width will be InfoSize.X
and the height InfoSize.Y.

Later, the ClientWidth of the form
will be set at least equal to In-
foSize.X, which will be the width of
the message, plus the width of the
glyph, a margin between these two
items and the margins between
these items and the edges of the
form. If TMsgBoxType is mtCustom then
there is no glyph and InfoSize.X
will be the width of the message
and margins at the left and right of
the message. TextRect contains the
X and Y coordinates of its bounda-
ries, so to determine the width
of the text we subtract the
TextRect.Left boundary from the
TextRect.Right boundary.

We will also need to calculate the
height of the information area. If we
have a one line caption, the height
of the glyph will be greater than the
height of the message. With a large
multi-line message, the opposite
will be true. We use the Max function
to determine which is greater, the
height of the glyph or the calcu-
lated height of TextRect (the mes-
sage), and return the maximum
value. A margin between the top of
the message or glyph and the top
of the form’s client area will be
added to the result.

Now we calculate the height of
the information area.

Creating The Buttons
Next, we need to create the but-
tons. By looping through our list of
possible buttons (TMsgBoxBtn) and
comparing each one to the list of
buttons we want to display
(AButtons), we can create only the

buttons we need. We will keep
track of how many buttons we have
created with the ButtonCount vari-
able. The ModalResult, Default and
Cancel properties will be assigned
to each button as appropriate. If we
compare the ButtonCount value to
the ADefaultButton parameter, we
can determine which button needs
to be the default and set the form’s
ActiveControl property to this
button.

I don’t use the Borland BitBut-
tons in my applications, I prefer to
use the standard Windows buttons
(TButton component). If you prefer
BitButtons then feel free to substi-
tute TBitBtn for TButton. Setting the
TBitBtn Kind property will set the
appropriate glyph, as well as the
ModalResult, Default and Cancel
properties.

We should check that we haven’t
created any conflicts by producing
two buttons with the Cancel or De-
fault properties set to True. If we
have, we need to set the respective
property to False for one of the
buttons.

If we only have an OK button, we
should set the button’s Cancel
property to True.

We now need to calculate the
height and width of the space
needed for displaying the buttons.
This includes the width of each
button, the margins between the
buttons and the edges of the form,
and a space between each button.
The height is simply the height of a
button, plus a margin at the bottom
and top of the buttons.

Titling Our Message Box
Often, I use the title of my applica-
tion as the caption for message
boxes. This way, if the user is run-
ning my application in the back-
ground, while using another
program, they can identify what
program created the displayed
message box. When I don’t use the
application title, I try to make the
caption descriptive of both the rea-
son for the message box, and the
application that created it. Usually
something like MyApp Error. The ti-
tle of the application is assigned on
the Application page of the Project
Options dialog and stored in the
Application.Title property.

Rather than constantly passing
Application.Title as the Caption
parameter, we’ll have CreateMsgBox
check ACaption to see if it is an
empty string. If it is, we’ll set the
form’s Caption property to Applica-
tion.Title, otherwise we’ll set it to
the ACaption parameter of the func-
tion. This way we can simply pass
an empty string as the ACaption pa-
rameter when we want to use the
application’s title as the message
box caption.

Size And Position
Now it’s time to resize the form so
it will display all the buttons, the
message, the glyph and the form’s
caption. This is done by setting
the form’s ClientWidth and Client-
Height properties. The form’s
ClientWidth property will be the
greatest of the width of the area
required by the buttons (Button-
Size.X), the area required by the
message and glyph (InfoSize.X),
and the width of the Caption. The
width of the caption can be deter-
mined by using the form’s Canvas.-
TextWidth method to calculate the
width in pixels of the caption. A
margin will be added to this so that
the caption is not pinched between
the system menu button and the
right edge of the form. To ensure
that the message box is not too
small, we’ll also compare these val-
ues to a MsgDlgMinWidth constant.
The form’s ClientHeight will be the
total height of the message and
glyph (InfoSize.Y) and the area re-
quired for the buttons (Button-
Size.Y). We will also compare this
to a MsgDlgMinHeight constant. All
the necessary margins were in-
cluded when we calculated the
InfoSize and ButtonSize variables
earlier.

Now we’ll adjust the positions of
the image control containing the
glyph and the label containing our
message. Earlier the Top and Left of
the image control were set equal to
mgTextMargin and the Top and Left
of the message label were set to 0.
If the height of the message text is
less than the height of the glyph,
the text will be centered vertically
within the height of the glyph. If the
height of the message text is
greater, the glyph will be centered

February 1997 The Delphi Magazine 31

vertically within the height of the
message text. The bottom edge of
the message text and glyph (infor-
mation area) are then calculated
and assigned to the ButtonTop vari-
able so that we can use this to
position the tops of the buttons.

The Left property for the text
label is then set. The Left property
of the glyph was set earlier.

Next we’ll loop through all the
buttons, setting the Left and Top
properties for each one. So that the
buttons are centered horizontally,
we’ll calculate the left position for
the leftmost button by subtracting
the center point for the Button-
Size.X variable from the center
point of the form’s ClientWidth.
Since the ButtonSize.X variable in-
cludes the left and right margins
between the buttons and the edges
of the form, we will add the margin
value to this calculation. After plac-
ing each button we’ll calculate the
Left property for the next, with
space between the buttons.

Removing Close
From The System Menu
We need to remove Close from the
system menu (one of the shortcom-
ings discussed earlier). We can do
this with the RemoveMenu API. Ear-
lier, the form’s BorderIcons prop-
erty was set to [biSystemMenu]. This
left only the Move and Close items on
the menu. The system menu, like all
menus, is zero based. This means
that the Move or topmost option is
in position 0 and the Close option
is in position 1. The RemoveMenu API
function allows us to remove each
item based on its position. After
each menu item is removed, the
remaining items are renumbered.
Because of this, it is recommended
that menu items always be re-
moved starting at the bottom. The
GetSystemMenu API function returns
the handle of the system menu,
which is required by the RemoveMenu
API function.

Finally, the default position of
the message box is set to the center
of the screen.

Calling CreateMsgBox
Now that we have created our mes-
sage box, we need a function that
will be responsible for calling the

CreateMsgBox function, returning
the form’s ModalResult value and
finally freeing the memory used by
our message box. Since the form
itself is returned by CreateMsgBox,
we will still be able to assign the
Help Context value to the form and
position it somewhere other than
the center of the screen. This way
we won’t have to pass these pa-
rameters to CreateMsgBox, simplify-
ing the code. This new function will
be called MsgDlgPos (see Listing 4).

The result variable for MsgDlgPos
will be initialized to zero, so that if
there is a problem creating the
message box the function will re-
turn zero. The message box is cre-
ated by calling CreateMsgBox,
passing the AMsg, ACaption, AType,
AButtons, and ADefaultButton pa-
rameters, and assigning the result
to the W variable, of type TForm.

To ensure that our application
does not fail to free up the memory
used by the form, we use a
try...finally block, placing W.Free
in the finally portion of the block.
In the try portion, we can assign
the HelpCtx parameter to the form
and change the form position if we
desire. To leave the form in the
default position, at the center of
the screen, we pass -1 for the X and
Y parameters of MsgDlgPos. If these
parameters are anything other
than -1, we assign them to the Top
and Left properties for the form.

To maintain a consistent size for
our form, regardless of the screen

resolution used by the user, the
form’s ScaleBy method is used,
passing the Screen.PixelsPerInch
property and the form’s PixelsPer-
Inch property (which was set to 96
in CreateMsgBox). The message box
is then displayed using the form’s
ShowModal method. The result of
ShowModal (which is the ModalResult
property of the button selected by
the user) is assigned to the Result
property of the MsgDlgPos function.
This will allow us to use the result
property of the MsgDlgPos function
in our program to determine which
button was selected.

Taming The Mouse Cursor
When I need to start a long opera-
tion, I set the mouse cursor to an
hourglass, to let the user know this
will take a while. This has become
common practice and has been
standardized by Microsoft (see
Section 3.6.1.1 on Graphical
Feedback in The Windows Interface:
An Application Design Guide,
Microsoft Press, 1992).

Changing the mouse cursor is
done by setting the Screen.Cursor
property to crHourglass. Contrary
to its naming, the Screen.Cursor
property does not change the cur-
sor for the entire screen, just for
the application and all forms
owned by the application.

Occasionally, I may use a mes-
sage box to inform the user of a
problem within a long operation.
When the Screen.Cursor property

function MsgDlgPos(const AMsg: string; const ACaption: string;
 AType: TMsgBoxType; AButtons: TMsgBoxButtons;
 ADefaultButton: TDefaultBtn; HelpCtx: Longint; X, Y: Integer): Word;
var
 W: TForm;
 TempCursor: TCursor ;
begin
 Result := 0;
 TempCursor := Screen.Cursor; { Store the current Screen.Cursor }
 { Use the following line if the message box is to be System Modal }
 { If SysModal Then AType := mtError; }
 W := CreateMsgBox(AMsg, ACaption, AType, AButtons, ADefaultButton);
 try
 W.HelpContext := HelpCtx;
 if X > -1 then W.Left := X;
 if Y > -1 then W.Top := Y;
 W.ScaleBy(Screen.PixelsPerInch, 96);
 Screen.Cursor := crDefault; { Set the Screen.Cursor to Default }
 { Make some noise }
 MessageBeep(MsgBeep[AType]);
 { Use the following line if the message box is to be System Modal }
 { If SysModal Then SetSysModalWindow(W.Handle); }
 Result := W.ShowModal;
 finally
 Screen.Cursor := TempCursor; { Restore the original Screen.Cursor }
 W.Free;
 end;
end;

➤ Listing 4

32 The Delphi Magazine Issue 18

has been set to crHourglass and the
cursor is positioned over our mes-
sage box, it will remain an hour-
glass. To change this, we’ll store
the current cursor before calling
CreateMsgBox, then change the
Screen.Cursor property to the
default before displaying our mes-
sage box. Changing the Screen.Cur-
sor property just before displaying
the message box, keeps the cursor
an hourglass while the message
box is being created, just in case it
takes a little while. After the form is
closed, we can then set the
Screen.Cursor property back to the
value we stored. If the current
cursor is already the default, these
procedures will have very little
impact on the speed or memory
required by our application.

Let’s Make Some Noise
Many application users, especially
database users and heads-down
data entry clerks, probably won’t
see our message box appear on the
screen. It has become common to
get their attention with sound. Mi-
crosoft included the MessageBeep
function in the Windows API for
just this purpose. Four of the six
possible values that can be passed
to MessageBeep are designed to ac-
company message boxes: MB_ICON-
EXCLAMATION, MB_ICONSTOP, MB_IC-
ONINFORMATION (Asterisk in the
Sound applet) and MB_ICONQUES-
TION. These are the same values
that are passed to the Windows
MessageBox API function to select
the icon or glyph that is displayed.
All of these sounds, plus others,
are assigned using the Sound

applet in Windows Control Panel.
The fifth value that can be passed
to MessageBeep is MB_OK. This sound
is assigned with the Default Beep
entry in the Sound applet. If the PC
does not have a sound card, or the
user has disabled System Sounds in
the Sound applet, Windows will use
a PC speaker beep.

There is one more value that can
be passed, but is not documented
very well. A value of 65535 will al-
ways produce a quick beep or
chirp from the PC speaker. Since
the user could assign a long wave
file to any of the entries in the
Sound applet, a value of 65535 al-
lows us to produce a brief sound. I
have an application that places val-
ues in a grid component. As each
value is placed in the grid, I use
MessageBeep(65535) to inform the
user the operation has been suc-
cessful. If the user is expecting
three values and only hears one
beep, they know there is a problem
and can fix it immediately.

By declaring an array of values
matching the possible message
box types, we can assign each
sound based on its ordinate posi-
tion in the array. The Default Beep
(MB_OK) will be used if our message
box is of type mtCustom. MessageBeep
is called just before the message
box is shown.

System Modal Message Box
There is one feature of the
Windows MessageBox API function
that we haven’t included: the
ability to create a system modal
message box, rather than applica-
tion modal. An application modal

message box prevents the user
from using the application until the
message box is closed and its mem-
ory is freed. When an application
modal message box is displayed,
all the other running programs are
accessible and can be used. A sys-
tem modal message box prevents
the user from using any application
until the message box is closed and
its memory is freed. This essen-
tially freezes the operating system.
I purposely commented this out in
the code, because a system modal
message box is seldom required
and can be dangerous. System mo-
dal message boxes and forms have
the potential to lock up the entire
system, forcing the user to reboot
and possibly lose data. System mo-
dal message boxes should be used
only for serious errors where sys-
tem damage could result if the mes-
sage box is ignored. Remember, a
system modal message box or win-
dow will not release its lock on the
user’s system until it is destroyed
and its memory is freed.

Our message box is application
modal. If you have a need to create
a system modal message box, you
can pass a Boolean parameter
(SysModal: Boolean) as part of the
MsgDlgPos function (see the
commented out lines in Listing 4).

In keeping with the Windows
standards that Microsoft created
(in the MessageBox function), a
system modal message box should
be of type mtError.

Simpler Calls For MsgDlgPos
This ends our MsgDlgPos function.
To use it, simply include the
MsgDlgs unit in the Uses clause of
the relevant unit and place calls to
MsgDlgPos in your code. To make
coding easier, I created a couple of
extra functions that call MsgDlgPos
and pass it a subset of our parame-
ters (the remaining parameters are
set to defaults). See Listing 5.

Centering Over Application
I have an application that only cov-
ers part of the screen, about
300x200 pixels. Most users run it in
the corner of the screen, while
using other applications. Since the
height and width of the message
box are unknown at design time, we

{ The majority of message boxes are placed in the center of the screen and do not
 require a help context value. The following MsgDlg function passes defaults for
 these two parameters. }
function MsgDlg(const AMsg: string; const ACaption: string; AType:
 TMsgBoxType; AButtons: TMsgBoxButtons; ADefaultButton: TDefaultBtn): Word;
begin
 Result :=
 MsgDlgPos(AMsg, ACaption, AType, AButtons, ADefaultButton, 0, -1, -1);
end;

{ Sometimes you may want to display a simple message, without a glyph, and only
 using a simple OK button. The following two functions will do this. The
 ShowMsg function only has one parameter, the message to display. Default values
 are used for the other parameters. }
procedure ShowMsgPos(const AMsg: string; X, Y: Integer);
begin
 MsgDlgPos(AMsg, ’’, mtCustom, [mbOK], dfFirst, 0, X, Y);
end;
procedure ShowMsg(const AMsg: string);
begin
 MsgDlgPos(AMsg, ’’, mtCustom, [mbOK], dfFirst, 0, -1, -1);
end;

➤ Listing 5

February 1997 The Delphi Magazine 33

can’t calculate the proper top and
left coordinates to center the mes-
sage box over the application. Our
final function, FormCenteredMsgDlg
does this. Instead of passing the X
and Y coordinates for the message
box, you pass the form that you
want to center the message box on.
For an MDI application, to center
the message box on the applica-
tion, rather than the current active
window, pass the parent form as
the last parameter, rather than the
form making the call. The code to
calculate the position is as follows:

W.Left := (AForm.Width div 2)-
 (W.Width div 2)+AForm.Left;
W.Top := (AForm.Height div 2)-
 (W.Height div 2)+AForm.Top;

Conclusion
The ability to customize and ex-
tend with Delphi’s is one of its
greatest advantages.

As I’ve demonstrated, this isn’t
just limited to extending and
subclassing components: we can
extend or replace runtime func-
tions and procedures to improve
functionality too.

Steven J. Colagiovanni is a Photo-
graphic Technician with a major
photographic manufacturer and is
currently living in Los Angeles,
California. He is a member of the
Los Angeles Delphi User Group
and programs in Delphi as a
hobby. He can be reached at
76063.2220@compuserve.com

➤ Figure 3: Our new, better, message box in action!

34 The Delphi Magazine Issue 18

	The CreateMsgBox Function
	Creating The Message
	Creating The Glyph
	Creating The Buttons
	Titling Our Message Box
	Size And Position
	Removing Close From The System Menu
	Calling CreateMsgBox
	Taming The Mouse Cursor
	Let’s Make Some Noise
	System Modal Message Box
	Simpler Calls For MsgDlgPos
	Centering Over Application
	Conclusion

